标签 “矩阵” 相关内容

  • 矩阵的特征值是什么意思

    设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是矩阵A的一个特征值。非零向量x称为A的对应于特征值λ的特征向量。在数学中,矩阵是一个按照长方阵列排列的复数或实···

    05-15 171
  • 三阶伴随矩阵怎么求

    在线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念。如果矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。三阶伴随···

    03-12 182
  • 对称矩阵的性质

    对称矩阵是指元素以主对角线为对称轴对应相等的矩阵。对称矩阵的性质性质:对于任何方形矩阵X,X+XT是对称矩阵;A为方形矩阵是A为对称矩阵的必要条件;对角矩阵都是对称矩阵;两个对称矩阵的积是对称矩阵,···

    03-12 61
  • 逆矩阵怎么求

    设A是数域上的一个n阶矩阵,若在相同数域上存在另一个n阶矩阵B,使得:AB=BA=E,则我们称B是A的逆矩阵,而A则被称为可逆矩阵。注:E为单位矩阵。逆矩阵怎么求最简单的办法是用增广矩阵。如果要求逆的···

    03-12 99
  • 正交矩阵的性质

    如果AAT=E(E为单位矩阵,AT表示“矩阵A的转置矩阵”)或ATA=E,则n阶实矩阵A称为正交矩阵。正交矩阵是实数特殊化的酉矩阵,因此总是属于正规矩阵。正交矩阵的性质1、逆也是正交阵对于一个正交矩阵···

    03-12 193
  • 矩阵的n次方怎么算

    在数学中,矩阵是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。矩阵的n次方怎么算这要看具体情况,一般有这几种方法:···

    03-12 85
  • 矩阵的逆矩阵怎么求

    初等行变换不影响线性方程组的解,也可用于高斯消元法,用于逐渐将系数矩阵化为标准形。初等行变换不改变矩阵的核(故不改变解集),但改变了矩阵的像。反过来,初等列变换没有改变像却改变了核。矩阵的逆矩···

    03-12 143
  • 矩阵相似的充要条件

    线性变换在不同基下所对应的矩阵是相似的;反过来,如果两个矩阵相似,那么它们可以看作同一个线性变换在两组基下所对应的矩阵。矩阵相似的充要条件设A,B是数域P上两个矩阵,A与B相似的充分必要条件是它···

    03-12 70
  • 矩阵等价的充要条件

    矩阵等价的定义:若存在可逆矩阵P、Q,使PAQ=B,则A与B等价。所谓矩阵A与矩阵B等价,即A经过初等变换可得到B。矩阵等价的充要条件是同型矩阵且秩相等。相似必定等价,等价不一定相似。两矩阵等价,秩相···

    03-12 121